Abstract

We develop a statistical machine learning framework to study the effect of eight input variables (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, glazing area distribution) on two output variables, namely heating load (HL) and cooling load (CL), of residential buildings. We systematically investigate the association strength of each input variable with each of the output variables using a variety of classical and non-parametric statistical analysis tools, in order to identify the most strongly related input variables. Then, we compare a classical linear regression approach against a powerful state of the art nonlinear non-parametric method, random forests, to estimate HL and CL. Extensive simulations on 768 diverse residential buildings show that we can predict HL and CL with low mean absolute error deviations from the ground truth which is established using Ecotect (0.51 and 1.42, respectively). The results of this study support the feasibility of using machine learning tools to estimate building parameters as a convenient and accurate approach, as long as the requested query bears resemblance to the data actually used to train the mathematical model in the first place.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.