Abstract

Nuclear magnetic resonance (NMR) relaxation rates encode information about the collective and local dynamics around nuclei. Provided a suitable microscopic model is available, this allows investigating, e.g., the solvation shell dynamics around aqueous ions. Previous attempts with molecular dynamics simulations faced the double challenge of calculating accurately the microscopic properties governing the relaxation process, such as the electric field gradient (EFG) at the nucleus, and of sampling the trajectories over sufficiently long times. Here we show how to compute the NMR relaxation rate from classical molecular dynamics simulations. We use a recently derived force field parametrized on ab initio calculations and show that the EFG predicted by this force field can be used to accurately estimate the one computed by DFT using the PAW method where the electronic structure is described explicitly. The predicted relaxation rates for aqueous alkaline and alkaline Earth cations are in good agreement with experimental data. Our approach opens the way to the quantitative interpretation of these rates with molecular simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.