Abstract

Abstract Objectives/Scope: The performance of ML-based rock properties prediction from seismic with limited and sparse well data is very often inadequate. To address this limitation, we propose a novel automatic well log regularization (ALR) method with specially designed feature augmentation strategy to improve the prediction accuracy. The effectiveness of ALR method is showcased on field data in Malay basin where we successfully predict elastic logs with 30% higher accuracy, while using only 28% less training dataset. Methods, Procedures, Process: The ALR workflow (Figure 1): (1) feature selection and augmentation; (2) training and prediction and (3) prediction optimizations. The workflow starts with predicting any logs type which are available at training but not in blind wells using standard ML workflow for all blind wells (Step 1-2). Then, these intermediately predicted logs at blind well were jointly used as input features together with seismic-derived attributes using a specially designed feature augmentation strategy (Step 3). Finally, Step 1and 2 are then repeated to predict the elastic logs using these augmented input features. Results, Observations, Conclusions: The ALR method was applied on an oil/gas field data in Malay basin to predict elastic logs (AI and SI) at five blind wells from seismic data only and compared to the standard ML workflow. Two wells were used as training (28% of all data). The prediction performance of standard ML workflow (Figure 2a) is poor and can only capture general mean values of the actual AI/SI logs. The results of ALR workflow (Figure 2b) shows 30% better prediction performance compared to the standard ML workflow. In general, the background and high-resolution trend are well captured, and the overall prediction performance is improved using the new proposed prediction method. There are conceivably two explanations for this result: a) the background (low frequency) trend of the well log is properly reconstructed in ALR using only using seismic data. This could mainly lie in the ability of augmented features in better learning the uncertain reflection-reception relationship between seismic data and elastic logs, as well as the spatial/time-varying property of seismic data; (b) The ability to learn meaningful nonlinear feature relationship between input (feature) and output (label) variables with little or no supervision seems to work properly using specially designed feature augmentation. Novel/Additive Information: The ALR method is an ML-based pseudo log generation from seismic data using specially designed feature augmentation strategy. The novel ALR implementation relaxes the requirement of having a massive amount of high-quality labeled data for training and can therefore be applied in areas with limited well data information. ALR method is proven to be highly accurate for direct elastic logs prediction and can potentially be extended to estimate petrophysical properties from seismic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.