Abstract
Accurate prediction of cycle times of machining part programs plays a crucial role in process planning and part flow optimization on shop floors. This paper presents a data-driven approach to model the trajectory generation (interpolation) strategy embedded in the Numerical Control (NC) system of CNC machine tools to accurately predict their machining cycle times. Artificial Neural Networks (ANN) are trained to learn and accurately mimic how the CNC plans its feedrate profile as it accelerates, decelerates, and interpolates along complex part programs. Proposed approach is validated experimentally and shown to predict machining cycle times with >95% accuracy along tested complex machining toolpaths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.