Abstract

Accurate prediction of the concentration of a large number of hyaluronic acid (HA) samples under temperature perturbations can facilitate the rapid determination of HA’s appropriate applications. Near-infrared (NIR) spectroscopy analysis combined with deep learning presents an effective solution to this challenge, with current research in this area being scarce. Initially, we introduced a novel feature fusion method based on an intersection strategy and used two-dimensional correlation spectroscopy (2DCOS) and Aquaphotomics to interpret the interaction information in HA solutions reflected by the fused features. Subsequently, we created an innovative, multi-strategy improved Walrus Optimization Algorithm (MIWaOA) for parameter optimization of the deep extreme learning machine (DELM). The final constructed MIWaOA-DELM model demonstrated superior performance compared to partial least squares (PLS), extreme learning machine (ELM), DELM, and WaOA-DELM models. The results of this study can provide a reference for the quantitative analysis of biomacromolecules in complex systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.