Abstract

Accurate, simple, rapid, and inexpensive prediction of complex traits controlled by numerous genes is paramount to enhanced plant breeding, animal breeding, and human medicine. Here we report a novel method that enables accurate, simple, and rapid prediction of complex traits of individuals or offspring from parents based on the number of favorable alleles (NFAs) of the genes controlling the objective traits. The NFAs of 226 cotton fiber length (GFL) genes and nine maize hybrid grain yield related (ZmF1GY) genes were directly used to predict cotton fiber lengths of individual plants and maize grain yields of F1 hybrids from parents, respectively, using prediction model-based methods as controls. The NFAs of the 226 GFL genes predicted cotton fiber lengths at an accuracy of 0.85, as the model methods and outperforming genomic prediction by 82 % – 170 %. The NFAs of the nine ZmF1GY genes predicted grain yields of maize hybrids from parents at an accuracy of 0.80, outperforming genomic prediction by 67 %. Moreover, the prediction accuracies of these traits were consistent across years, environments, and eco-agricultural systems. Importantly, the accurate prediction of these traits directly using the NFAs of the genes allows breeding to be performed in greenhouse, phytotron, or off-season, without the need of the model training and validation steps essential and costly for model-based genomic or genic prediction. Therefore, this new method dramatically outperforms the current model-based genomic methods used for phenotype prediction and streamlines the process of breeding, thus promising to substantially enhance current plant and animal breeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.