Abstract

Hypertension (HT) is a general disease, and also one of the most ordinary and major causes of cardiovascular disease. Some diseases are caused by high blood pressure, including impairment of heart and kidney function, cerebral hemorrhage and myocardial infarction. Due to the limitations of laboratory methods, bioactive peptides for the treatment of HT need a long time to be identified. Therefore, it is of great immediate significance for the identification of anti-hypertensive peptides (AHTPs). With the prevalence of machine learning, it is suggested to use it as a supplementary method for AHTPs classification. Therefore, we develop a new model to identify AHTPs based on multiple features and deep learning. And the deep model is constructed by combining a convolutional neural network (CNN) and a gated recurrent unit (GRU). The unique convolution structure is used to reduce the feature dimension and running time. The data processed by CNN is input into the recurrent structure GRU, and important information is filtered out through the reset gate and update gate. Finally, the output layer adopts Sigmoid activation function. Firstly, we use Kmer, the deviation between the dipeptide frequency and the expected mean (DDE), encoding based on grouped weight (EBGW), enhanced grouped amino acid composition (EGAAC) and dipeptide binary profile and frequency (DBPF) to extract features. For Kmer, DDE, EBGW and EGAAC, it is widely used in the field of protein research. DBPF is a new feature representation method designed by us. It corresponds dipeptides to binary numbers, and finally obtains a binary coding file and a frequency file. Then these features are spliced together and input into our proposed model for prediction and analysis. After a tenfold cross-validation test, this model has a better competitive advantage than the previous methods, and the accuracy is 96.23% and 99.10%, respectively. From the results, compared with the previous methods, it has been greatly improved. It shows that the combination of convolution calculation and recurrent structure has a positive impact on the classification of AHTPs. The results show that this method is a feasible, efficient and competitive sequence analysis tool for AHTPs. Meanwhile, we design a friendly online prediction tool and it is freely accessible at http://ahtps.zhanglab.site/ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call