Abstract

In diabetes prevention and care, invasiveness of glucose measurement impedes efficient therapy and hampers the identification of people at risk. Lack of calibration stability in non-invasive technology has confined the field to short-term proof of principle. Addressing this challenge, we demonstrate the first practical use of a Raman-based and portable non-invasive glucose monitoring device used for at least 15 days following calibration. In a home-based clinical study involving 160 subjects with diabetes, the largest of its kind to our knowledge, we find that the measurement accuracy is insensitive to age, sex, and skin color. A subset of subjects with type 2 diabetes highlights promising real-life results with 99.8% of measurements within A + B zones in the consensus error grid and a mean absolute relative difference of 14.3%. By overcoming the problem of calibration stability, we remove the lingering uncertainty about the practical use of non-invasive glucose monitoring, boding a new, non-invasive era in diabetes monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call