Abstract

Over the past decades, air pollution has caused severe environmental and public health problems. According to the World Health Organization (WHO), fine particulate matter (PM2.5), a key component reflecting air quality, is the fourth leading cause of death worldwide after cardiovascular disease, smoking, and diet. Various research efforts have aimed to develop PM2.5 forecasting models that can be integrated into a solution to mitigate the adverse effects of air pollution. However, PM2.5 forecasting is challenging because air pollution data are non-stationary and influenced by multiple random effects. This paper proposes an effective multivariate multi-step ensemble machine learning model for predicting continuous 24-h PM2.5 concentrations, considering meteorological conditions, the rolling mean of PM2.5 time series, and temporal features. PM2.5 is strongly correlated with space and time. Therefore, forecasting results from one location are insufficient to represent the level of air pollution for an entire city. In this study, we established six real-time air quality monitoring sites in different regions, including traffic, residential, and industrial areas in Ho Chi Minh City (HCMC), and generated forecasting results for each station. Various statistical methods are incorporated to evaluate the performance of the model. The experimental results confirm that the model performs well, substantially improving its forecasting accuracy compared to existing PM2.5 forecasting models developed for HCMC. In addition, we analyze to determine the contribution of different feature groups to model performance. The model can serve as a reference for citizens scheduling local travel and for healthcare providers to provide early warnings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.