Abstract

Outdoor performance analyses of photovoltaic modules can be advantageous compared to indoor investigations, as they take into account the influences of natural test conditions on the modules. However, such outdoor performance assessments usually suffer from poor accuracies due to undefined test conditions for the modules. This paper reports on a comprehensive concept for improved outdoor analysis which results in performance data with indoor laboratory precision. The approach delivers current-voltage characteristics for even more test conditions than required by the standard IEC 61853-1. Hence, curves of modules’ electrical parameters above irradiance can be deduced for any temperatures. The concept allows precise determination of temperature coefficients for user-defined irradiances taking into account outdoor effects like light-soaking or light-induced degradation. The calibration and measurement uncertainty of the presented outdoor analysis method is evaluated quantitatively. For the measurements an advanced outdoor set-up was used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.