Abstract
BackgroundMass spectrometry is an essential technique in proteomics both to identify the proteins of a biological sample and to compare proteomic profiles of different samples. In both cases, the main phase of the data analysis is the procedure to extract the significant features from a mass spectrum. Its final output is the so-called peak list which contains the mass, the charge and the intensity of every detected biomolecule. The main steps of the peak list extraction procedure are usually preprocessing, peak detection, peak selection, charge determination and monoisotoping operation.ResultsThis paper describes an original algorithm for peak list extraction from low and high resolution mass spectra. It has been developed principally to improve the precision of peak extraction in comparison to other reference algorithms. It contains many innovative features among which a sophisticated method for managing the overlapping isotopic distributions.ConclusionsThe performances of the basic version of the algorithm and of its optional functionalities have been evaluated in this paper on both SELDI-TOF, MALDI-TOF and ESI-FTICR ECD mass spectra. Executable files of MassSpec, a MATLAB implementation of the peak list extraction procedure for Windows and Linux systems, can be downloaded free of charge for nonprofit institutions from the following web site: http://aimed11.unipv.it/MassSpec
Highlights
Mass spectrometry is an essential technique in proteomics both to identify the proteins of a biological sample and to compare proteomic profiles of different samples
The measure more commonly used is the precision or more frequently the number of peaks correctly extracted [14,15,16,18,30]. Some of these algorithms are further evaluated considering the impact on the protein/peptide identification; this can be estimated by analyzing the improvement of the score used to rank the candidate peptides/proteins [18,30]
The best way to extract useful information from proteomic mass spectra is to generate the peak list composed by the monoisotopic mass, the charge and the intensity of each detected biomolecule
Summary
Mass spectrometry is an essential technique in proteomics both to identify the proteins of a biological sample and to compare proteomic profiles of different samples. In both cases, the main phase of the data analysis is the procedure to extract the significant features from a mass spectrum. Mass spectrometry (MS) has been one of the most used tools to analyze large biological molecules since the introduction of the soft ionization methods, such as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). For this reason MS is increasingly being used in proteomics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.