Abstract

We demonstrate in our paper, an implementation on Microsoft HoloLens, deep learning supported in the context of object detection. The main aim of this system is to create the more accurate object detection model for Augmented Reality using communication between the deep learning processing and the Microsoft HoloLens as Input/Output device. This system aims to help the wearable device user to detect and to recognize between objects in real world. For the object detection approach, a deep learning model has been used for the implementation of this system called YOLO. This model is near to real-time and it supports to detect more than 9000 objects. Our system provides the annotation of augmented object detected and its limitation area or bounding box via HoloLens. It allows to detect the new position of moving object in a few milliseconds. Preliminary results show a great rate of object detection with a detection time comparable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.