Abstract

Our experimental scheme is based on a barrel optical microcavity filled with a dye solution. It is found that the number of non-condensed photons is characterized by an analytical function, which involves a q-digamma function in mathematics. We employ the q-digamma function to calculate the spatial and momentum distributions of ideal photons in a one-dimensional barrel cavity. The first main finding in this paper is that the spatial and momentum distributions possess a similar profile. The second main finding is that when photons are in the normal state, the density profile exhibits Friedel oscillations. The third main finding is that when photons are in the BEC state, the density profile exhibits a sharp peak with extremely narrow width. The fourth main finding is that the central peak of the density distribution is a monotonically increasing function of the photon number N but is a monotonically decreasing function of the temperature T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.