Abstract
The first version of nano-injection device for capillary gas chromatography (cGC) based on inkjet microchip was developed. The nano-injector could accurately control the injection volume in nano-liter, even pico-liter range. Its configuration and mechanism were discussed in detail. Adopting photolithography and plasma etching technology, we firstly fabricated the inkjet microchip and stuck to a piezoelectric device to eject droplets. Then, a special feedback tube was added to make it function as a nano-injector for cGC, which was an important design to compensate pressure difference between the evaporation chamber of cGC and the sample extrusion chamber of inkjet microchip. The injected volume can be precisely controlled by the number of injected droplets. Excellent precision (RSDs were below 10.0%, n = 5) was observed for the injection of ethanol at elevated pressure. Minimum injection volume was about 1.25 nL at present. Additionally, good repeatability of the calibration curves for the hydrocarbons ethanolic solution (the RSDs of all components were below 5.30%, n = 5) confirmed its feasibility in quantitative analysis regardless of concentration. These results suggested that it can be an accurate nano-injector for cGC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.