Abstract
The use of B-spline basis sets is explored in the context of a vibrational program for automatic potential energy surface (PES) construction and multimode anharmonic vibrational wave function calculation. Results are compared with calculations using localized Gaussians and harmonic oscillator basis functions. Potential energy surfaces are constructed in an iterative fashion using a recently developed adaptive density-guided approach. The basis set requirements for an accurate representation of the vibrational wave functions are met by both B-spline basis sets as well as the well-known distributed Gaussian basis sets. Furthermore, the property of minimal support of the B-spline functions makes the use of B-spline basis more advantageous compared to harmonic oscillator basis functions, when combined with the adaptive procedure for PES construction used in this work. The methodology is tested for model potentials and water and subsequently applied to study vibrational states of dioxirane and diazirinone. The latter have proven to be elusive to experimental characterization and high level vibrational calculations based on accurate PES may offer a guidance for the experimental work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.