Abstract

In robotics, there are two methods of trajectory planning: the joint interpolation method which is appropriate for fast transition of the robot end-effector; and the cartesian interpolation method which is appropriate for slower motion of the end-effector along straight path segments. Neither method, however, is sufficient to allow a smooth, differentiable, transition of position and orientation of the end-effector. In this paper, we propose a method of trajectory planning that will permit more accurate motion of a robot end-effector. The method is based on the curvature theory of a ruled surface generated by a line fixed in the end-effector, referred to as the tool line. The orientation of the end-effector about the tool line is included in the analysis to completely describe the six degree-of-freedom motion of the end-effector. The linear and angular properties of motion of the end-effector, determined from the differential properties of the ruled surface, are utilized in the trajectory planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.