Abstract

In this paper we estimate, for several investment horizons, minimum capital risk requirements for short and long positions, using the unconditional distribution of three daily indexes futures returns and a set of short and long memory stochastic volatility and GARCH-type models. We consider the possibility that errors follow a t-Student distribution in order to capture the kurtosis of the returns’ series. The results suggest that accurate modelling of extreme observations obtained for long and short trading investment positions is possible with an autoregressive stochastic volatility model. Moreover, modelling futures returns with a long memory stochastic volatility model produces, in general, excessive volatility persistence, and consequently, leads to large minimum capital risk requirement estimates. Finally, the models’ predictive ability is assessed with the help of out-of-sample conditional tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.