Abstract

Abstract Determining the 129I concentration, a long-lived radionuclide present in spent nuclear fuel, is a major issue for nuclear waste disposal purpose. 129I also has to be measured in numerous environmental, nuclear and biological samples. To be able to accurately determine the 129I concentration, an analytical method based on the use of a multicollector-inductively coupled plasma mass spectrometer (MC-ICPMS) combined with an isotope dilution technique using an 127I spike, was developed. First, the influence of different media (HNO3, NaOH and TMAH) on natural 127I signal intensity and stability and on memory effects was studied. Then an analytical procedure was developed by taking into account the correction of blanks and interferences. Tellurium was chosen for instrumental mass bias correction, as no certified standards with suitable 127I/129I ratio are available. Finally, the results, reproducibility and uncertainties obtained for the 129I concentration determined by isotope dilution with a 127I spike are presented and discussed. The final expanded relative uncertainty obtained for the iodine-129 concentration was lower than 0.7% (k = 1). This precise 129I determination in association with further activity measurements of this nuclide on the same sample will render it possible to determine a new value of the 129I half-life with a reduced uncertainty (0.76%, k = 1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.