Abstract

ObjectiveTo investigate the accuracy of the Agatston score obtained with the ultra-high-pitch (UHP) acquisition mode using tin-filter spectral shaping (Sn150 kVp) and a kVp-independent reconstruction algorithm to reduce the radiation dose.Materials and MethodsThis prospective study included 114 patients (mean ± standard deviation, 60.3 ± 9.8 years; 74 male) who underwent a standard 120 kVp scan and an additional UHP Sn150 kVp scan for coronary artery calcification scoring (CACS). These two datasets were reconstructed using a standard reconstruction algorithm (120 kVp + Qr36d, protocol A; Sn150 kVp + Qr36d, protocol B). In addition, the Sn150 kVp dataset was reconstructed using a kVp-independent reconstruction algorithm (Sn150 kVp + Sa36d, protocol C). The Agatston scores for protocols A and B, as well as protocols A and C, were compared. The agreement between the scores was assessed using the intraclass correlation coefficient (ICC) and the Bland–Altman plot. The radiation doses for the 120 kVp and UHP Sn150 kVp acquisition modes were also compared.ResultsNo significant difference was observed in the Agatston score for protocols A (median, 63.05; interquartile range [IQR], 0–232.28) and C (median, 60.25; IQR, 0–195.20) (p = 0.060). The mean difference in the Agatston score for protocols A and C was relatively small (−7.82) and with the limits of agreement from −65.20 to 49.56 (ICC = 0.997). The Agatston score for protocol B (median, 34.85; IQR, 0–120.73) was significantly underestimated compared with that for protocol A (p < 0.001). The UHP Sn150 kVp mode facilitated an effective radiation dose reduction by approximately 30% (0.58 vs. 0.82 mSv, p < 0.001) from that associated with the standard 120 kVp mode.ConclusionThe Agatston scores for CACS with the UHP Sn150 kVp mode with a kVp-independent reconstruction algorithm and the standard 120 kVp demonstrated excellent agreement with a small mean difference and narrow agreement limits. The UHP Sn150 kVp mode allowed a significant reduction in the radiation dose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.