Abstract

Binary stars are the main source of fundamental data on stellar masses and radii (M, R). Considerable progress has been made in recent years in the quality and quantity of such data, and stellar masses and radii of high accuracy have led to a number of qualitatively new and interesting results on the properties and evolution of normal stars. This paper reviews the current status of fundamentalM andR determinations which (i) have errors ⩽ 2%, the limit for non-trivial results in many applications, and (ii) can be presumed valid for single stars. These two conditions limit the discussion to data fromdetached, doublelined eclipsing binary systems. After a brief discussion (Sect. 2) of the main tests for accuracy and consistency which must be met for observational data to be included in the sample, data for 45 binary systems (90 single stars) are presented in Sect. 3 (Table 1 and Figs. 2–5). Spectral types are O8-M1 on the main sequence, with only two stars clearly in the red-giant region. From the review by Popper (1980), data for only 6 systems survive unchanged in the present list, while improved data are given for 18 systems; 21 systems are new additions. Broadband colours, effective temperatures, and luminosities are also given, but are scale-dependent and considerably less reliably determined thanM andR. The observed ranges inM andR for a given colour far exceed the observational errors, primarily due to evolutionary effects within the main sequence. For this reason, single-parameter relations used to predictM andR for single stars are limited to an accuracy of some ±15% inM and ±50% inR, basically independent of the number and accuracy of the data used to establish the relations. Two-parameter calibrations are discussed (Sect. 4) which can eventually reduce these errors to & 5% in bothM andR. At this level, abundance effects become significant and presumably account for the residual scatter. Comparison of the data with stellar evolution models is the topic of Sect. 5. Characteristic features of the data which are crucial in such work are emphasized, rather than attempts to “prove” the validity of any particular set of models. Already fromM andR alone, some significant constraints can be derived (Fig. 4). When bothM, R, andT e are known, the initial helium abundanceY can be estimated if the metal-abundance parameter Z is assumed or determined. Studies in which binaries with accurate values ofM, R, and Z are fit by models calculated for the precise observed masses, and withY and mixing length constrained to solar values, provide the most stringent tests of the models. Probing further model refinements such as convective overshooting requires full use of the potential of the data. For example, models may yield general main-sequence limits which are consistent with the observations, but still be unable to fit any single system to the precision of the data. Conditions for critical, informative tests are discussed. Tidal effects in binaries are briefly discussed in Sect. 6. As tidal forces are extremely sensitive to the dimensions and internal structure of the stars, the present sample is well suited for such studies. Recent success in matching computed and observed apsidal-motion parameters for early-type binaries is mentioned. Finally, main priorities for future work are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.