Abstract

Such is the brain's complexity that even small neural circuits contain hundreds of neurons making thousands of connections. Connectivity and optical analyses provide close-up views of two such circuits. See Articles p.168 , p.175 & Letter p.212 Three papers in this issue of Nature use the retina as a model for mapping neuronal circuits from the level of individual synaptic contacts to the long-range scale of dendritic interactions. Helmstaedter et al. used electron microscopy to map a mammalian retinal circuit of close to a thousand neurons. The work reveals a new type of retinal bipolar neuron and suggests functional mechanisms for known visual computations. The other two groups study the detection of visual motion in the Drosophila visual system — a classic neural computation model. Takemura et al. used semi-automated electron microscopy to reconstruct the basic connectome (8,637 chemical synapses among 379 neurons) of Drosophila's optic medulla. Their results reveal a candidate motion detection circuit with a wiring plan consistent with direction selectivity. Maisak et al. used calcium imaging to show that T4 and T5 neurons are divided into specific subpopulations responding to motion in four cardinal directions, and are specific to 'ON' versus 'OFF' edges, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call