Abstract

ObjectivesThe objective of this study is to develop a deep learning (DL) model for fast and accurate mandibular canal (MC) segmentation on cone beam computed tomography (CBCT).MethodsA total of 220 CBCT scans from dentate subjects needing oral surgery were used in this study. The segmentation ground truth is annotated and reviewed by two senior dentists. All patients were randomly splitted into a training dataset (n = 132), a validation dataset (n = 44) and a test dataset (n = 44). We proposed a two-stage 3D-UNet based segmentation framework for automated MC segmentation on CBCT. The Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (95% HD) were used as the evaluation metrics for the segmentation model.ResultsThe two-stage 3D-UNet model successfully segmented the MC on CBCT images. In the test dataset, the mean DSC was 0.875 ± 0.045 and the mean 95% HD was 0.442 ± 0.379.ConclusionsThis automatic DL method might aid in the detection of MC and assist dental practitioners to set up treatment plans for oral surgery evolved MC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.