Abstract

We consider the problem of localizing a novel image in a large 3D model. In principle, this is just an instance of camera pose estimation, but the scale introduces some challenging problems. For one, it makes the correspondence problem very difficult and it is likely that there will be a significant rate of outliers to handle. In this paper we use recent theoretical as well as technical advances to tackle these problems. Many modern cameras and phones have gravitational sensors that allow us to reduce the search space. Further, there are new techniques to efficiently and reliably deal with extreme rates of outliers. We extend these methods to camera pose estimation by using accurate approximations and fast polynomial solvers. Experimental results are given demonstrating that it is possible to reliably estimate the camera pose despite more than 99% of outlier correspondences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.