Abstract

We investigate the isomerization enthalpy of the dihydroazulene/vinylheptafulvene (DHA/VHF) molecular photoswitch system derivatives using electronic structure calculation methods including density functional theory (DFT), quantum Monte Carlo (QMC), and coupled cluster (CCSD(T)). Recent efforts have focused on tuning the isomerization enthalpy of the photoswitch for solar thermal energy storage applications using substitutional functional groups on its five- and seven-membered carbon rings, predominantly using DFT for the energy predictions. However, using the higher accuracy QMC and CCSD(T) methods, we show that in many cases DFT incorrectly predicts the isomerization enthalpy, and the errors depend on the functional groups substituted and the choice of the DFT functional. Isomerization of the DHA to VHF molecule is an electrocyclic ring-opening reaction on the five-membered ring of the DHA isomer. We find that the DFT errors are correlated to the electrocyclic ring-opening reactions of cyclobutene and c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.