Abstract

This paper presents a novel method for inner profile measurement and geometric parameter evaluation, such as the radius of the bottom, steepness and straightness of the steep sidewall of a high aspect ratio aspheric workpiece, by utilizing a two-probe measuring system, which includes a lateral displacement gauge for the inner steep sidewall profile measurement and an axial displacement gauge for the inner deep underside profile measurement. To qualify the measurement accuracy, the systematic errors associated with the measurement procedure, including the miscalibration, misalignment and the roundness error of the gauge probes, as well as the slide motion error of the four-axis motion platform, are all evaluated and separated from the measurement results. A point cloud registration algorithm is employed to stitch the evaluated inner sidewall profile and the inner underside profile to form an entire inner profile of the workpiece. To verify the performance of the newly proposed method, the inner profile of a high aspect ratio aspheric workpiece, which has a tapered cone shape with a maximum inner radius of 40 mm, a maximum inner depth of 140 mm and a steep sidewall angle approaching 85°, is measured in experiments. The measurement result is compared with that of a coordinate measuring machine (CMM), and the comparison verifies the feasibility of the proposed measurement system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call