Abstract

Mitochondrial redox homeostasis plays a vital role in many biological processes. Hydrogen peroxide (H2O2), one of the most important components for the balance between oxidizing species and reducing species, also acts as the messenger of mitochondrial damage. Thus, an accurate in situ quantitative detection of H2O2 in mitochondria is very important for the evaluation of mitochondrial redox homeostasis. Here, we develop robust surface-enhanced Raman spectroscopy (SERS) nanoprobes based on Au nanoparticles as SERS substrate and functionalized carrier, which is further modified with a phenylboronic acid pinacol ester for specific H2O2 response and a location peptides for mitochondrial targeting by creating a robust Au-Se interface. The SERS nanoprobes show good resistance to abundant thiol under biological conditions and superior performance for mitochondria H2O2 monitoring in living cells than the SERS nanoprobes with the traditional Au-S interface, which enables us to achieve in situ quantification of mitochondrial H2O2 and obtain its real-time dynamic change under oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.