Abstract

We examine various topics involved in the creation of accurate theoretical gravitational waveforms from binary black-hole systems. In Chapter 2 a pseudospectral numerical code is applied to a set of analytic or near-analytic solutions to Einstein's equations which comprise a testbed for numerical-relativity codes. We then discuss methods for extracting gravitational-wave data from numerical simulations of black-hole binary systems, and introduce a practical technique for obtaining the asymptotic form of that data from finite simulation domains in Chapter 3. A formula is also developed to estimate the size of near-field effects from a compact binary. In Chapter 4 the extrapolated data is then compared to post-Newtonian (PN) approximations. We compare the phase and amplitude of the numerical waveform to a collection of Taylor approximants, cross-validating the numerical and PN waveforms, and investigating the regime of validity of the PN waveforms. Chapter 5 extends that comparison to include Pade and effective-one-body models, and investigates components of the PN models. In each case, a careful accounting is made of errors. Finally, we construct a long post-Newtonian–numerical hybrid waveform and evaluate the performance of LIGO's current data-analysis methods with it. We suggest certain optimizations of those methods, including extending the range of template mass ratios to unphysical ranges for certain values of the total mass, and a simple analytic cutoff frequency for the templates which results in nearly optimal matches for both Initial and Advanced LIGO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.