Abstract

Given a graph dataset, how can we generate meaningful graph representations that maximize classification accuracy? Learning representative graph embeddings is important for solving various real-world graph-based tasks. Graph contrastive learning aims to learn representations of graphs by capturing the relationship between the original graph and the augmented graph. However, previous contrastive learning methods neither capture semantic information within graphs nor consider both nodes and graphs while learning graph embeddings. We propose TAG (Two-staged contrAstive curriculum learning for Graphs), a two-staged contrastive learning method for graph classification. TAG learns graph representations in two levels: node-level and graph level, by exploiting six degree-based model-agnostic augmentation algorithms. Experiments show that TAG outperforms both unsupervised and supervised methods in classification accuracy, achieving up to 4.08% points and 4.76% points higher than the second-best unsupervised and supervised methods on average, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.