Abstract

Mineralization of bone and teeth involves interactions between biomolecules and hydroxyapatite. Associated complex interfaces and processes remain difficult to analyze at the 1 to 100 nm scale using current laboratory techniques, and prior apatite models for atomistic simulations have been limited in the representation of chemical bonding, surface chemistry, and interfacial interactions. In this contribution, an accurate force field along with pH-resolved surface models for hydroxyapatite is introduced to represent chemical bonding, structural, surface, interfacial, and mechanical properties in quantitative agreement with experiment. The accuracy is orders of magnitude higher in comparison to earlier models and facilitates quantitative monitoring of inorganic-biological assembly. The force field is integrated into the AMBER, CHARMM, CFF, CVFF, DREIDING, GROMACS, INTERFACE, OPLS-AA, and PCFF force fields to enable realistic simulations of apatite-biological systems of any composition and ionic strength. Sp...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.