Abstract

Accurate variational high-resolution spectra calculations in the range 0-8000 cm(-1) are reported for the first time for the monodeutered methane ((12)CH3D). Global calculations were performed by using recent ab initio surfaces for line positions and line intensities derived from the main isotopologue (12)CH4. Calculation of excited vibrational levels and high-J rovibrational states is described by using the normal mode Eckart-Watson Hamiltonian combined with irreducible tensor formalism and appropriate numerical procedures for solving the quantum nuclear motion problem. The isotopic H→D substitution is studied in details by means of symmetry and nonlinear normal mode coordinate transformations. Theoretical spectra predictions are given up to J = 25 and compared with the HITRAN 2012 database representing a compilation of line lists derived from analyses of experimental spectra. The results are in very good agreement with available empirical data suggesting that a large number of yet unassigned lines in observed spectra could be identified and modeled using the present approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.