Abstract

AbstractCharge carrier mobility is an important characteristic of organic field‐effect transistors (OFETs) and other semiconductor devices. However, accurate mobility determination in FETs is frequently compromised by issues related to Schottky‐barrier contact resistance, that can be efficiently addressed by measurements in 4‐probe/Hall‐bar contact geometry. Here, it is shown that this technique, widely used in materials science, can still lead to significant mobility overestimation due to longitudinal channel shunting caused by voltage probes in 4‐probe structures. This effect is investigated numerically and experimentally in specially designed multiterminal OFETs based on optimized novel organic‐semiconductor blends and bulk single crystals. Numerical simulations reveal that 4‐probe FETs with long but narrow channels and wide voltage probes are especially prone to channel shunting, that can lead to mobilities overestimated by as much as 350%. In addition, the first Hall effect measurements in blended OFETs are reported and how Hall mobility can be affected by channel shunting is shown. As a solution to this problem, a numerical correction factor is introduced that can be used to obtain much more accurate experimental mobilities. This methodology is relevant to characterization of a variety of materials, including organic semiconductors, inorganic oxides, monolayer materials, as well as carbon nanotube and semiconductor nanocrystal arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.