Abstract
The bond-propagation algorithm for the specific heat of the two dimensional Ising model is developed and that for the internal energy is completed. Using these algorithms, we study the critical internal energy and specific heat of the model on the square lattice and triangular lattice with free boundaries. Comparing with previous works (Phys Rev E 86:041149, 2012; Phys Rev E 87:022124, 2013), we reach much higher accuracy (\(10^{-28}\)) of the internal energy and specific heat, compared to the accuracy \(10^{-11}\) of the internal energy and \(10^{-9}\) of the specific heat reached in the previous works. This leads to much more accurate estimations of the edge and corner terms. The exact values of all edge and corner terms are therefore conjectured. The accurate forms of finite-size scaling for the internal energy and specific heat are determined for the rectangle-shaped square lattice with various aspect ratios and various shaped triangular lattice. For the rectangle-shaped square and triangular lattices and the triangle-shaped triangular lattice, there is no logarithmic correction terms of order higher than \(1/S\), with \(S\) the area of the system. For the triangular lattice in rhombus, trapezoid and hexagonal shapes, there exist logarithmic correction terms of order higher than \(1/S\) for the internal energy, and logarithmic correction terms of all orders for the specific heat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.