Abstract

The effect of high gate-leakage current on the accuracy of mobility evaluation was investigated. This investigation showed that a high gate leakage current makes it difficult to measure the mobility accurately in the case of using a conventional equivalent circuit with lumped circuit elements. To measure the mobility accurately, the authors therefore used a transmission-line model. Its validity was experimentally confirmed by using the capacitance-frequency characteristic of the gate of MOSFETs. The transmission-line model shows that a high gate-leakage current induces a voltage distribution in the channel, which causes a serious error in the mobility evaluation. Accordingly, a precision parameter, which clarifies the relation between channel length and measurement error, was defined. This parameter was then used to define a criterion for channel length for accurately measuring mobility. The channel-length criterion was used to successfully evaluate the mobility of n-MOSFETs with gate dielectrics of 1.4-nm-thick oxynitride (SiON).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.