Abstract

Non-contact measurement of human body height can be very difficult under some circumstances.In this paper we address the problem of accurately estimating the height of a person with arbitrary postures from a single depth image. By introducing a novel part-based intermediate representation plus a four-stage increasingly complex deep neural network, we manage to achieve significantly higher accuracy than previous methods. We first describe the human body in the form of a segmentation of human torso as four nearly rigid parts and then predict their lengths respectively by 3 CNNs. Instead of directly adding the lengths of these parts together, we further construct another independent developing CNN that combines the intermediate representation, part lengths and depth information together to finally predict the body height results.Here we develop an increasingly complex network architecture and adopt a hybrid pooling to optimize training process. To the best of our knowledge, this is the first method that estimates height only from a single depth image. In experiments our average accuracy reaches at 99.1% for people in various positions and postures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.