Abstract

Energy modelling can enable energy-aware software development and assist the developer in meeting an application's energy budget. Although many energy models for embedded processors exist, most do not account for processor-specific config-urations, neither are they suitable for static energy consumption estimation. This paper introduces a set of comprehensive energy models for Arm's Cortex-M0 processor, ready to support energy-aware development of edge computing applications using either profiling- or static-analysis-based energy consumption estimation. We use a commercially representative physical platform together with a custom modified Instruction Set Simulator to obtain the physical data and system state markers used to generate the models. The models account for different processor configurations which all have a significant impact on the execution time and energy consumption of edge computing applications. Unlike existing works, which target a very limited set of applications, all developed models are generated and validated using a very wide range of benchmarks from a variety of emerging IoT application areas, including machine learning and have a prediction error of less than 5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.