Abstract
A new global potential energy surface is reported for the (4)A'' ground electronic state of the N(3) system from double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the complete basis set limit. It shows three equivalent metastable potential wells for C(2v) geometries that are separated from the three N((4)S) + N(2) asymptotes by energy barriers as predicted from previous ab initio work. The potential well and barrier height now predicted lie 42.9 and 45.9 kcal mol(-1) above the atom-diatom dissociation limit, respectively, being about 1 kcal mol(-1) lower than previous theoretical estimates. The ab initio calculations here reported predict also a (4)B(1)/(4)A(2) conical intersection and reveal a new minimum with D(3h) symmetry that lies 147 kcal mol(-1) above the atom-diatom asymptote. All major topographical features of the potential energy surface are accurately described by the DMBE function, including the weakly bound van der Waals minima at large atom-diatom separations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.