Abstract

A variety of mechanistic models have been proposed to characterize the resilient behavior of unbound granular materials as a function of applied stress states including confinement and shear effects. However, significant computation effort is needed to implement the nonlinear stress-dependent modulus in the pavement structure response analysis. In this study, an equivalent modulus of granular base layer was developed to represent the nonlinear anisotropic behavior of aggregate base layer using three-dimensional finite element modeling analysis. The analysis results indicate that the equivalent modulus is not a constant value but changes with temperature, vehicle speed, and load. The equivalent modulus increases as the temperature increases but decreases as the vehicle speed increases due to the viscoelastic nature of asphalt surface layer. The equivalent modulus results in comparable results in the prediction of critical pavement responses, compared to the responses predicted using the real nonlinear anisotropic model for the granular base. The developed equivalent modulus can be used as an alternative approach when the sophisticated model is not available or the analysis needs to be conducted in a quick manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.