Abstract

Optical coherence tomography (OCT) is a promising method for clarifying the boundaries of the infiltrative brain tumors within surrounding white matter. Since gliomas often tend to grow close to eloquent brain areas, the question of the proximity of the tumor to white matter tracts sharply arise during tumor resection to prevent their damage. Crosspolarization (CP) OCT is a so-called functional extension of OCT that seems to have benefits in visualization of myelin. It looks perspective not just to detect white matter, but also receive information about its condition – the myelination rate and presence of ordered fibers. The aim of this study was to visualize white matter organization of eloquent brain areas with CP OCT using post-processing methods. The ex vivo CP OCT images were collected from autopsy subjects of the human brain. The brain specimens contained white matter of different organization and localization: brainstem, corpus callosum, frontal and parietal tracts, subcortical white matter. Two optical coefficients (attenuation and inter-channel attenuation difference) were calculated for each A-scan and two types of color-coded maps based on them were built. No significant differences based on CP OCT attenuation and inter-channel attenuation difference coefficients were demonstrated between white matter from different brain areas. However, in vivo studies can show conversely results. The detection of white matter microstructure during surgery looks promising therefore additional CP OCT performance build-up can be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call