Abstract

Mutations characterize diverse human cancers; there is a positive correlation between elevated mutation frequency and tumor progression. One exception is acute myeloid leukemia (AML), which has few clonal single nucleotide mutations. We used highly sensitive and accurate Duplex Sequencing (DS) to show now that AML, in addition, has an extensive repertoire of variants with low allele frequencies, < 1%, which is below the accurate detection limit of most other sequencing methodologies. The subclonal variants are unique to each individual and change in composition, frequency, and sequence context from diagnosis to relapse. Their functional significance is apparent by the observation that many are known variants and cluster within functionally important protein domains. Subclones provide a reservoir of variants that could expand and contribute to the development of drug resistance and relapse. In accord, we accurately identified subclonal variants in AML driver genes NRAS and RUNX1 at allele frequencies between 0.1% and 0.3% at diagnosis, which expanded to comprise a major fraction (14–53%) of the blast population at relapse. Early and accurate detection of subclonal variants with low allele frequency thus offers the opportunity for early intervention, prior to detection of clinical relapse, to improve disease outcome and enhance patient survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.