Abstract

COVID-19 is a severe epidemic affecting the whole world. This epidemic, which has a high mortality rate, affects the health systems and the economies of countries significantly. Therefore, ending the epidemic is one of the most important priorities of all states. For this, automatic diagnosis and detection systems are very important to control the epidemic. In addition to the recommendation of the “reverse transcription-polymerase chain reaction (RT-PCR)” test, additional diagnosis and detection systems are required. Hence, based on the fact that the COVID-19 virus attacks the lungs, automatic diagnosis and detection systems developed using X-ray and CT images come to the fore. In this study, a high-performance detection system was implemented with three different CNN (ResNet50, ResNet101, InceptionResNetV2) models and X-ray images of three different classes (COVID-19, Normal, Pneumonia). The particle swarm optimization (PSO) algorithm and ant colony algorithm (ACO) was applied among the feature selection methods, and their performances were compared. The results were obtained using support vector machines (SVM) and a k-nearest neighbor (k-NN) classifier using the 10-fold cross-validation method. The highest overall accuracy performance was 99.83% with the SVM algorithm without feature selection. The highest performance was achieved after the feature selection process with the SVM + PSO method as 99.86%. As a result, higher performance with less computational load has been achieved by realizing the feature selection. Based on the high results obtained, it is thought that this study will benefit radiologists as a decision support system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call