Abstract

This paper describes use of a novel exponential approximation for designing dB-linear variable gain amplifiers (VGAs). The exponential function is accurately generated using a simple error-compensation technique. The dB-linear gain is controlled linearly by the gate voltage, resulting in a simple and robust VGA. The proposed dB-linear VGA fabricated in a 65-nm CMOS process achieves a total variable gain range of 76 dB and dB-linear range greater than 50 dB with ±0.5-dB gain error. Under a 1.2-V supply voltage, the current consumption of the VGA is 1.8 mA and that of the output buffer is 1.4 mA. The input-referred in-band noise density is 3.5 nV/√{Hz} and the in-band OIP3 is 11.5 dBm. Due to the very simple circuit topology, the total active area of the VGA and the output buffer is extremely small, 0.01 mm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call