Abstract
Low initial Coulombic efficiency (ICE) is an obstacle for practical application of Li-rich Mn-based layered oxides (LLOs), which is closely related with the irreversible oxygen evolution owing to the overoxidized reaction of surface labile oxygen. Here we report a NH4 F-assisted surface multicomponent integration technology to accurately control the ICE, by which oxygen vacancies, spinel-layered coherent structure, and F-doping are skillfully integrated on the surface of treated LLOs microspheres. Though the regulation on the removed amount of labile oxygen by surface integrated structure, the ICE of LLOs cathodes can adjust from starting value to 100 %. X-ray absorption spectroscopy, refined X-ray diffraction, and scanning transmission electron microscopy show that the removed labile oxygen mainly comes from Li2 MnO3 -like structure. Even operating at a high cut-off voltage of 5 V, the capacity retention of integrated sample at 200 mA g-1 is still larger than 98 % after 100 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.