Abstract

Distributed secondary control has been widely used in hierarchical control structures, where multiple distributed generators (DGs) need to coordinate to regulate system voltage and frequency. In these systems, consensus algorithms determine the average of a group of dynamic states (e.g., voltages measured by a group of DGs). To be useful, consensus algorithms must be computationally efficient, stable and accurate. In practice, numerous practical implementation challenges significantly affect the consensus equilibrium. In this paper, we quantify the accuracy deviations of the distributed average observer algorithms proposed in the literature to demonstrate the problems with the state-of-the-art distributed averaging techniques. A novel approach is proposed that achieves accurate average tracking in the presence of time-varying communication delays among agents. In our implementation, time synchronization of all distributed controllers is enabled by a novel software platform, called Resilient Information Architecture Platform for the Smart Grid (RIAPS). The proposed distributed average observer is implemented on hardware controllers and its effectiveness is validated in a controller hardware-in-the-loop testbed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call