Abstract
AbstractIn dynamic factor models, factors are often extracted using principal components with their asymptotic confidence regions having empirical coverages below the nominal ones when the temporal dimension is small. We propose a subsampling procedure to compute the factor loadings uncertainty and correct the asymptotic covariance matrix of the extracted factors. We show that the empirical coverages of the modified confidence regions are closer to the nominal ones than those of asymptotic regions and asymptotically valid bootstrap regions. The results are empirically illustrated obtaining confidence intervals of the underlying factor in a system of Spanish macroeconomic variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.