Abstract

We describe the treatment of Rashba spin-orbit coupling (SOC) in interacting many-fermion systems within the auxiliary-field quantum Monte Carlo framework, and present a set of illustrative results. These include numerically exact calculations on the ground-state properties of the spin-balanced, attractive two-dimensional Fermi gas, as well as a study of a tight-binding Hamiltonian with repulsive interaction. These systems are formally connected via the Hubbard Hamiltonian plus SOC, but cover different physics ranging from superfluidity and triplet pairing to SOC in real materials in the presence of strong interactions in localized orbitals. We carry out detailed benchmark studies of the method in the latter case when an approximation is needed to control the sign problem for repulsive Coulomb interactions. The methods presented here provide an approach for predictive computations in materials to study the interplay of SOC and strong correlation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.