Abstract

A square matrix is called a P-matrix if all its principal minors are positive. Subclasses of P-matrices with many applications are the nonsingular totally positive matrices and the nonsingular M-matrices. For diagonally dominant M-matrices and some subclasses of nonsingular totally nonnegative matrices, accurate methods for computing their singular values, eigenvalues or inverses have been obtained, assuming that adequate natural parameters are provided. The adequate parameters for diagonally dominant M-matrices are the row sums and the off-diagonal entries, and for nonsingular totally nonnegative matrices are the entries of their bidiagonal factorization. In this paper we survey some recent extensions of these methods to other related classes of matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.