Abstract

The main purpose of this work is to present an accurate computational approach for solving the singularly perturbed Burger-Huxley equations. The quasilinearization technique linearizes the nonlinear term of the differential equation. The finite difference approximation is formulated to approximate the derivatives in the differential equations and then accelerate its rate of convergence to improve the accuracy of the solution. Numerical experiments were conducted to sustain the theoretical results and to show that the presented method produces a more correct solution than some surviving methods in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.