Abstract

Orthogonal Fourier-Mellin moments (OFMMs) suffer from geometric error and the numerical integration error. The geometric error arises when the square image is mapped into a unit disk and the mapping does not become perfect. The numerical integration error arises when the double integration is approximated by the zeroth order summation. In this paper, we propose methods which reduce these errors. The geometric error is reduced by considering the arc-grids lying on the boundary of the unit disk and the square grids lying completely inside the disk. The numerical integration error is reduced by Gaussian numerical integration, for which a simple computational framework is provided. The relative contributions of geometric error and numerical integration error to the total error are also analyzed. It is observed that the geometric error is significant only for the small images whereas the magnitude of numerical integration is significantly high for all image sizes, which increases with the order of moments. A simple computational framework which is similar to the conventional zeroth order approximation is also proposed which not only reduces numerical integration error but also reduces geometric error without considering arc-grids. The improved accuracy of OFMMs are shown to provide better image reconstruction, numerical stability and rotation and scale invariance. Exhaustive experimental results on a variety of real images have shown the efficacy of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call