Abstract

Introduction and objectivesFinal position of the neo-commissures is uncontrolled during transcatheter aortic valve implantation (TAVI), potentially hindering coronary access and future procedures. We aimed to develop a standard method to achieve commissural alignment with the ACURATE neo valve. MethodsThe relationship between native and TAVI neo-commissures was analyzed in 11 severe aortic stenosis patients undergoing TAVI. Based on computed tomography analysis, an in silico model was developed to predict final TAVI commissural posts position. A modified implantation technique, accurate commissural alignment (ACA) and a dedicated delivery system were developed. TAVI implants were tested in 3-dimensional (3D) printed models and in vivo. Commissural misalignment and coronary overlap (CO) were analyzed. ResultsThe in silico model accurately predicted final position of commissural posts irrespective of the implantation technique performed (correlation coefficient, 0.994; 95%CI, 0.989-0.998; P<.001). TAVI implant with patient-specific rotation was simulated in 3D printed models and in 9 patients. ACA-oriented TAVI implants presented adequate commissural alignment in vivo (mean commissural misalignment of 7.7 ±3.9°). None of the ACA oriented implants showed CO, whereas in silico conventional implants predicted CO in 6 of the 9 cases. ConclusionsAccurate commissural alignment of the ACURATE neo device is feasible by inserting the delivery system with a patient-specific rotation based on computed tomography analysis. This is a simple and reproducible method for commissural alignment that can be potentially used for all kinds of TAVI devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call