Abstract
The evolution of computing and networking allowed multiple computers to be interconnected, aggregating their processing powers to form High-Performance Computing (HPC) architectures. Applications running in these computational environments process and communicate huge amounts of information, taking several hours or even days to complete their executions so, understanding their computation and communication demands is essential for management purposes. Moreover, although most of HPC applications are implemented with well-known algorithms that tend to follow a given pattern in computation and communication, the classical methods of traffic analysis have not been accurate to classify them. In this sense, we argue that observing and understanding the visual patterns in these applications' traffic matrices (TMs) can provide an accurate classification method. In this paper, we propose TReco, a framework that maintains a database with visual features extracted from these TMs and applies machine learning techniques to classify the HPC applications that are consuming the network, regardless of the number of computational nodes executing it. In our experiments, we reached accuracy rate over 99.75%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.